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I. INTRODUCTION

In 1977, Lloyd and Brown! investigated the feasibility of
controlling a 105mm spinning projectile by means of horizontal and
vertical side forces. Their numerical calculations yielded the sur-
prising result that an applied constant-amplitude yaw moment could
cause dynamic instability. The usual linear analysis seems to predict
that such a moment would cause a steady-state horizontal trim angle
but would have no effect on the dynamic stability,

This difficulty was resolved by Lloyd and Brown through the obser-
vation that the differential equation for the angular motion in fixed-
plane coordinates* contained nonlinear terms in ¢FP » the coordinate

system spin rate. These usually neglected terms vanish completely
when the equations are transformed to nonrolling coordinates, The
terms involving the horizontal and vertical control moments become
nonlinear terms that can be easily linearized. The resulting sixth-
erder system can be approximately solved for large gyroscopic stability
factor (s_ > 4) and excellent agreement with the numerical results ob-
tained, The theory, however, only partially considers the influence
of gravity and neglects the effect of drag and roll damping moment.

In this report, we will show that the coordinate system transfor-
mation is unnecessary and that a proper linearization in the fixed-
plane coordinates requires the solution of a much simpler fourth-order
system. This allows the very easy inclusion in the theory of the full
effect of gravity as well as the effects of drag and roll damping.
Much more importantly, the requirement of high stability factor is
eliminated so that the very important case of a finned missile with
little or no spin can be studied. Finally, the effective technique of ;
quasi-linearization will be used to derive the effect of the truly non- 7
linear part of the éFP terms on the frequencies and the damping rates

of the motion.

1. K.H. Lloyd and D.P. Brown, "Influence of Gravity and Applied Side
Forces on the Stability of a Spinning Projectile, " Weapons Research
Establighment TR 1906(W), South Australia, November 1977,

AD A053648. (See also "Instability of Spinning Projeotiles During
Terminal Guidance," Jowrnal of Guidance and Control 2, Jan-Feb 1979,
pp. 65-70.)

*Pized plane axes 2, §, & pitoh and yaw with the missile but roll so
that the j-axis is alwaye in the horisontal plane.
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IT. EQUATIONS OF MOTION

The plane trajectory of a particle flying at velocity V and
trajectory angle GT with respect to the horizontal can be described

by the equations?2

vl
V- CB - g (2.1)
o, = -g 2V cos o (2.2)
T T )
pSL
where CB * Sn CD

g* =gt Vv?sin 0,

and vhere derivatives are with respect to. the nondimensional arc-
length, s, These equations are good approximations for the actual
variation of V and 9T for a symmetric missile. The moments and

transverse forces that have a measurable effect on the missile's
motion are usually expressed in missile-fixed coordinates3 as

Mx=(%)pszv2[sfcl + ¢ cz] (2.3)
S p
(1 2| fo
My + 1M, (2) szv[(¢ Cy -iCM)E
pa a
+C, n-ic, & +1¢ ¢

2, C.H. Murphy, "Gravity-Induced Angular Motion of a Spinning
Migssile," Ballistic Research Laboratoriee Report No. 15648, July
1971, AD 730841, (See also Jowrnal of Spacecraft and Rockets 8,
August 1971, pp. 824-828.)

3. C.H. Murphy, "Free Flight Motiom cf Symmetric Missiles," Ballistic
Resaaroh Laboratories Report No. 1216, July 18963, AD 442757,




AT U e AT T e e e

[ _1__ 2 [
FY + i Fz (2) p SVveC . £ (2.5) |
where o =pav?
. -1
E = (v+iw)V
. -1
' b =(q+ir) Vv

The complex variable £ locates the plane cf the velocity vector and
has a magnitude that is the sine of the total angle of attack.

The roll equation can be obtained for the roll moment of
Equation {2.3) and differs from the usual roll equatlon by a gravity
term that acts on the dynamic pressure:

o = (D + g% ¢ +D, (2.6)
] where D1 = CB + k CE
p
k -2
E D2 = ka Gf Czé
- 21’
ka [Ix/m 2<]

In addition to the aerodynamic force and moment and the gravity
force, we assume constant amplitude control forces and moments that are
perpendicular to the projectile's axis and either in the horizontal
plane or the vertical plane containing the missile's axis. These
control forces, which could be produced by roll-stabilized canards,
make fixed-plane coordinates most suitable for the analysis., Since
fixed-plane axes pitch and yaw with the projectile but roll so that

the y axis is always horizogtal, it can be shown that this system has
an angular velocity vector with components":

5FP = (éppl ql r) (2'7)

Means Fli ht Tests," Balliastic Research Laboratormea
Report 974, Fobruary 1556, AD 93521,
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4. C.H. Muzppp "Measurement of‘NonZznear Forces and Momente by
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dgp = - T tan 8
8 is the angle between the missile's axis
and the horizontal (8 = q);

a, r are the pitch and yaw rates in the )
fixed-plane coordinates

For this coordinate system, the derivatives of the linear and )
angular momentum can be computed in the usual way3:* and set equal to
the sum of the external forces and moments. The equations for the

transverse components can then be given in the form of two first-order
complex differential equations:

~

g -ivw ﬁ = -y C: E + (i cos 6 + E sin GT)g 2 V'2

‘g * (2.8)
¢ Ryt 1P, ) 8 MV o g g E
; YC ZC FP

N - -2f * s * Iz

v - i Py kt [¢ CM -1 CM ]6

po a

: N PSS TS I (2.9)
3 ]t Mq D )

[}
N

| where ,
‘ P = Ix ¢ /Iy

-1 .
y = uV = the cosine of the total angle '
of attack
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The starred ccefficients are of the order 107" while the

dimensionless control forces and moments will be limited to at most :
10" . Thus, products of these terms can be neglected when y is

climinated between Equations (2.8) and (2.9) to obtain:

N Y W |
£ 4 M- g*-3-1Pl¢
(2.10)

-[M+iPT]E=0+G+C

where

/
= N T / _ a4 : / .Y " F
®= -2 ¢, & {¢FP (P ¢FP)+1[¢FP (H Y)+4>FP]}E

[
]

~ =2 a -~
[P cos 8 - i usine] gaVv ™ «+g* (& -1iPg
g

5”"‘1’?’?5@"‘?*’"“’*’% R L RS g AT “ PR TR i g Y

-2 -1 -1
= i N . - o / » . 2
C =i [( kt (MYC + i MZC) (P - ivy'y )Q(FYC + 1 FZC)] (mVe)

. -2 _ 2y -1
£ iy kt (MYC + 1 MZC)(m Ve)

ITI. LINEARIZED SOLUTICN FOR CONTROL MOMENT

For simplicity, we will first neglect the gravity terms in
Equation (2.10) and consider the linear approximation to ® . In doing
this, it is most important to remember that Equation (2.10) predicts a
steady-state equilibrium angle
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se - Be +14 % “ M+ 1PT (3.1)

If the small force terms are neglected, the real part of Equation
(2.8) ylelds

yPAaV5ie-p o ¥pp G (3.2)

Equation {(3.2) is now multiplied by tan 6 and solved for ¢%p .

.al 0
¢§p . B tan 6 (3.3)
Yy + o tan 8
Now
o= fqdtie + G -6)v (3.4)

@’FP=8§’{tan 9e+y;1 (G - a

ot j;l (a 8, tan ee)(é - 8,)

-~ A “ ~ - ~ ~ ~ 2
vay (G- 8% vy (G- 8B -8 +ay (B -B%)

t a g’ tan 0, (3.5)
where

a = [y, + a_ tan <3e]'1

e

= A N - "2 3 -l
a, = [2a, - (1 - B) a tan ©_](2v))
a, = (1+avy)d v’
2 e’ e ‘e

= - 42 2 3’1
ag = (1 - a2 +2avy, B2)(a tan 6,)(2 7))

Since a linear analysis is concerned with small amplitude motion
about the equilibrium angle f, , ¢ is expanded in powers of { - £e

and its derivatives. The linear part of this expansion is:

- - 3 al - 2l 1% .
¢, iatan @, (8" + (H - 1 P)B']E, (3.6)

10
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The usual solution to the linearized Equation (2.10) neglecting ¢ is

E=E +K e +K e (3.7)

; where
5 o = (1/2)(P & /T AW
B
% / -¢’J. H + PT - ¢’J.’
K. /K, = A, =
i’

) 2¢, -P
¥

b

. -2 b
It is important to note that |¢g| ~ 10" and Ile ~10" .

For ascending or descending flight, °1 introduces terms in

it b L

8 = (& + £)/2 and 8" = (E" + E1yy2 .

The linearized Equation (2.10) becomes

e e T T SR T NI S e A

[1 +(ai Ee/z) tan ee][é” + (H-1iP) F;’] - (M+iPTE

SseE o i

(3.8)

=C- (ai Ee/Z) tan 9 [é” + (H-1iP) E/]

As is shown in Reference 5, the effect of the conjugate terms
in Equation {3.8) is to add two additional modes in - ¢ and - ¢ .

For reasonable values of Ee , the amplitude of these modes will be
much less than K1 and Kz' If we approximate the actual sclution by

the two-mode solution of Equation (3.7) and substitute in Equation
(3.8), the conjugate terms have no contribution to the damping or

5. C.H. Murphy, "Angular Motion of Spinning Almost Symmetric
Miseiles," U.S. Army Armament Research and Development Command,
Ballistic Research Laboratory Technical Report 02121, November 1978,
AD A063538.

11
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frequency equations obtained from the coefficients of exp (i ¢j) .
For simplicity, we make the usual size assumptions ijl << |¢3| .

~

[H] << |¢3| T << l¢3|) and retain only terms linear in a, and By *

(¢’j)2 - ¢’J. P+ M+ tan 6, M &e +PT ée]/z =0 (3.9)

_ / - o . _ »
- H¢j+PT ¢J. tanee[Mée PTae]/'Z

j (3.10)
2 ¢’J. - P

IV. LINEARIZED SOLUTION FOR GRAVITY

For no control forces (C = 0), Equation (2.10) predicts a steady-
state equilibrium angle

-G
= - 4.1
e M+ 1iP(T - g*) G/M (4.1)

Caa bd

where -2
G=Pg2aV cos ee .

Since &e is zero, eT = ee and the linearized G and ¢ become

G=G-1ig*PB8 (4.2)

o~ 1gv (P/M[BY + (H - iP)§] (4.3)

Equation (2.10) reduces io

B+ H-g*-1iPE - M+ iPTE
(4.4)
=G+ igr (P/ME” + (H - iP)g' -M§]

12
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The solution to Equation (4.4) can be approximated by the two-mode
tquation (3.7) with the result that the second term on the right of
Equation (4.4) has no measurable contribution to the frequency or
damping.

(¢3)2 P ¢ e Ma0 (4.5)
- - ! - ]
(H - g% ¢j + D1 ¢j

Xi = (4 ~(’)
. 2 ¢3 -p

Differentiating Equation (4.5},

o, - M
¢ = - (4.7
j 2 ¢/j - p

Since 02 in Equation (2.6) is zero for a body of revolution, the
damping rate for a shell becomes

-H¢, +PT (D P+2¢, (P-¢)gr-M]
\, = J S J ] (4.8)

J 5 o /. m?2
245 =P (265 -P)

It is interesting tp note that as the gyroscggic.stability increases,
¢ goes to P and ¢, 8oes to 0 and the contribution of gravity to

damping decays to zero.

Fquation (4.,6) is precisely the same as that in Reference 2,
The derivation given in Reference 2, however, separately neglected
the second term in Equation (4.2) and all of ¢ , The correct deriva-
tion combines these terms and shows that their combined effect can be
neglected,
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V. QUASILINEAR ANALYSIS OF ¢

For horizontal flight without control forces or gravity, ¢ is
cubic and was shown in Reference 4 to cause a change in frequency.
Numerical calculations by Clark and Hodapp® showed that this frequency
shift was very well predicted by the quasilinear analysis. In this
section, we will derive the quasilinear prediction for cubic ¢ and
ascending or descending flight with control forces but no gravity.

The cubic part of the nonlinear term in v/ on the left side of
tEquation (2.10) can be easily computed:

. 24 .
' /v) & = %- L%gl—'ﬁl

*--% ¢ By ¥ (5.1)

The quasilinear technique then assumes an undamped motion of the form
of Equation (3.7) and seeks the average in-phase and out-of-phase
contributions to the coefficient of I(j exp(1 ¢j)by the relation

- j
[F]j’av = 3 | Fe ds (5.2)

If there is no equilibrium angle, Sw is 27 (¢a - cj;’z)‘1 , the wave-

length of & exp(-i¢j) . For nonzero equilibrium angles, the integrand
has several wavelengths present and Sw is taken to be large compared
to the largest of these.

Now

~

(£ &) = i[}’ Kle(ei¢ - o719

i¢ -i¢ i, -1 ¢
+ ¢} Ky Gc(e 1 _e 1)+ ¢’2 K, Gc(e 2 2)]

(5.3)

6. E.L. Clark, Jr., and A.E. Hodapp, "An Improved Technique for
Determining Missile Roll Rate with the Epicyclic Theory," Sandia
Laboratories SC-DC-70-4768, April 1970.

14
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where
8, = |&,
R N
Therefore,
I y-1 § - Y, 2
VAR A PR N S VAL L A CARET A S
i(24, - ¢))
2 ., -1 2 1
+(¢’2) l(zﬁcl(1 e
av
(5.4}
where
T
[1,, =5 [ 1ds
av Sw 0

For a special valuz of spin, 2 ¢; - ¢a and the last term in Equation

(5.4) has a nonzero contribution., If we assume that this special
value of spin does not occur,

Yyt B gy = 6 () - ¢)) KD/2 (5.5)

Vvt €y, ey = ¢ (8, - 6 K272 (5.6)

1
i o T ,.‘J

e T o S et
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A similar calculation can be done for the nonlinear part of & .
The combined nonlinear contributions to the first mode have the form*:

=8, =0

Iy y-l E’ +« 9 - °z] =b, + (terms that are zero when &e

1,av
(5.7)

where

b, = [YI v? E'] + a2 tan? §_ | (8)2 (£ - Ee)] |
1l,av l,av !

_ 2Yi Y [Blgl (a - &e)]
l,av

ey R R R T A £ T TR

;—3[5' G- 308 - e,)] - %—‘[e" & - &)t - ee)]
e 1,av e 1,av

= 1y2 g2 !/ g2 2 2
/2 [(#2 K& + 2 ¢, 12 Ja? tan2 6

PV Y ! g2 - ! g2
SCARRNCERAN ER RN CERAA LY

A similar expression for the second mode can be obtained by inter-
changing subscripts 1 and 2.

t These average nonlinear contributions can now be added to the co-
i efficients of exp(i¢j) in the usual derivation of the linear damping

rates and frequencies. For the special case of no control forces and
moments, the damping rates are unaffected and the frequency equations
become

142 _ / 2 12 g2 rog2
(¢7) P oy + [M]I,av + {tan 8, [(¢1) K2 + P ¢, K2]

i to_ G ! y2 -
| s (0 - o)) ¢ Kl} 2=0

*For gimplioity, the quite emall nonlinear terms in H have been
omitted.
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Table I, Assumed Parameters for 10Smm Shell

L = 105 m CD = 0,13 !
S = .0087 m? C, e 1.7
1 a
n = 15 kg Cz = - 0.012
| %
= - 2 = .
Ix .023 kg-m CM 3.8
o]
I, = .22 kg-m? C = 0.2
Yy Mpa
. i
= y 3 = -
p 1.05 kg/m CM + CM. 8
q a
V = 250 m/s
1050 rad/s

N
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and a similar equation for the other mode. These frequsncy equations,
for ee = 0 and an appropriate choice for M, were the equations that

gave the excellent agreement with the numerical calculations of
Reference 6.

VI. DISCUSSION

According to our analysis, the effect of gravity on damping rates

is to replace H by H-g* . Equation (3.10) for the damping rates be-
comes

Aj'-(H-g*) ¢3+PT-¢3’-(tanee)[Mée-PT&e]/Z

, -
2 ¢j p

(6.1)

Since |P T| is usually much smaller than [M|, the effect of &e on the

damping rates can be neglected. Equation (6.1) can therefore be used
to derive stability boundaries for the maximum tyim angles for B .
For a gyroscoPically stable missile with positive spin

(8] > P/2 > ¢ > 0),

~

B, <B_ tan 6_ < B
e e

) (6.2)

2
where

2 - - g% I "
By M0 [0- g o) - P T e o]]

Table I gives the various parameters for a 105mm shell and
Figure 1 gives the boundaries B1 and 82 in degrees as functions of

the gyroscopic stability factor, sg . The Lloyd and Brown results

were limited to large stability factors and their numerical calcula-
tions were for sg = 5.8 . As we can see from Figure 1, the allowable

range for ée becomes quite small for stability factors less than 2 .
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A particularly interesting case is that of a statically stable
missile with little or no spin (M < 0, lsgl << 1) . For this case,

oL (6.3
M 2 ¢j .
For an exponential air density and constant static moment coefficient, ‘
M/M=p'/p = -0 & sin o (6.4)
where
P =0, e %"

Since ¢g 2 & /M, the stability bounds reduce to the very special
condition:

|8, tan o | <B (6.5)

where
2(H - g*) -0 & sin 6

B - T
/N

It is interesting to note that the value of B for the Copperhead
missile is estimated to be 12 degrees.
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LIST OF SYMBOLS
- -1
[ye +a, tan ee]
Ile for a statically stable, nonspinning missile

lower and upper bounds on ée tan ee

that part of the fixed-plane complex yaw forcing
function due to the control force and moment

drag force
(1/2) p SV

1i1ft force
(1/2) o S V¢ [g]

roll damping moment coefficient
roll moment coefficient due to canted fins

Magnus moment
(1/2) o S & V2 ¢ |[g]

sum of the damping moments
(1/2) o S 2 V2 |y

static moment
(1/2) o S & V2 |g|

Y CL + CD , the normal force coefficient
a

-2 *
C*+ %k " C
)
D a P
{ ]
£ S
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LIST OF SYMBOLS
(Continued)

transverse missile-fixed components of the aerodynamic
force

FYC’ FZC transverse fixed-plane components of the control force
G Pgmv'zcosee
G that part of the fixed-plane complex yaw forcing
function due to gravity
g magnitude of the gravity acceleration
g* gL v? sin or
* * -2 * *
H Y€ -Gk (CM "YCM.)
a q a

Ix, Iy axial and transverse moments of inertia
Kj magnitude of the j-th modal arm, j = 1, 2

24
ka (Ix/m 24)

2}
kt (Iy/m 24)
£ reference length

=2 _»

M Y kt CM

[
MX‘ MY’ Mz missile-fixed components of the aerodynamic moment
MYC’ MZC transverse fixed-plane components of the control moment
m mass

/

P (1/1) ¢
P, q, T missile spin, pitch and yaw rates measured in the

missile-fixed system

‘24
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LIST OF SYMBOLS
(Continued)

missile pitch and yaw rates measured in the fixed-plane
system

reference area

integration interval (calibers) in an averaging process

nondimensional arclength along the trajectory

gyroscopic stability factor

* -2 *
yC *Y ka Cy
a pa

time

missile-fixed components of the velocity

magnitude of the velocity

fixed-plane axes, the x-axis along the missile's
longitudinal axis and the y-axis always in the
horizontal plane

angles of attack and sideslip in the fixed-plane system
uv!
g,

fin cant angle

angle between the missile's axis and the horizontal

trajectory angle

K. /K. i=1, 2
J/ i 1

(@ +ir)ev?

1

(v +iw)Vv

air density
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Superscripts
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Subscrigts

()
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av
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LIST OF SYMBOLS
(Continued)

air density at sea level

1/(6700 m)

that part of the fixed-plane complex yaw forcing
function due to the spin of the fixed-plane system

linear part of ¢
p L V_1

spin rate of the fixed-plane system
orientation angle of the j-~th modal arm, j =1, 2
4 - %

angular velocity of the fixed-plane system

d( )/dt

d( )/ds = () 2 v}

£:§—& () ... except for g*
< M

fixed-plane value of ( )

complex conjugate of ( )

steady-state equilibrium value

s
W
S&l g [] ds
-1 Sw -1 ¢j
(K; Sy) { [1e ds
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